THE DEVELOPMENT OF JOVIAL

Jules I, Schwartz
Computer Sciences Corp.

1. THE BACKGROUND

1.1 The Environmental and Personnel Setting

The time was late 1958, Computers that those who were
involved with the first JOVIAL project had been using
included the JOHNNIAC (built at Rand Corporation), the
IBM-AN/FSQ-7 (for SAGE), 701, and 704, A few had
worked with board wired calculators. Some had never
programmed, For those using IBM, the 709 was the
current machine, There were various other manufactur-
ers at the time, some of whom do not exist today as
computer manufacturers.

The vacuum tube was still in vogue, Very large memo-
ries, either high speed direct access or peripheral
storage, didn't exist, except for magnetic tape and
drums on some computers.

The first large scale system which was built and main-
tained by thousands of people was in the process of being
installed after a considerable amount of effort, expense,
and technological innovation, Called SAGE, it was a
large real-time system (very large by 1958 standards).
It had, among other things, an interesting and very val-
uable (even by today's standards) utility system for
assisting in development. This included the Communi-
cation Pool. The Comm Pool's purpose was to permit
the sharing of System Data among many programs by
providing a centralized data description. Programming
for SAGE had been done in machine'language, as was
almost all programming up to that time.

FORTRAN existed and had been in use for a few years,
but use of higher level languages wasn't nearly as com-
mon as the use of such languages today. Certainly the
majority of people involved in compiler efforts at that
time, and in particular the initial JOVIAL language
development and compiler effort, had almost no expe-
rience with such activities, I had had experience with
the language and compiler called PACT (Project for
Automatic Coding Techniques) which was developed and
described in 1954-1955 (Melahn 1956). But actually this
experience, largely because of the nature of that lan-
guage and the computer the first version ran on (the
IBM 701), was not particularly valuable for the develop-
ment of languages in the ALGOL class.

©1978 Association for Computing Machinery, inc.

One of the significant things that got the JOVIAL lan-
guage and compiler work started was an article on
Expression Analysis that appeared in the 1958 ACM
Communications (Wolpe 1958). The fact that this was
actually quite a revelation to us at that time seems
interesting now. Since that day, of course, there have
been many developments in the parsing of mathematical
and logical expressions. However, that article was the
first exposure many of us had to the subject. Some of
us who had just finished work on some other projects
(including SAGE) began experimentation with the proc-
essing of complex expressions to produce an interme~
diate language utilizing the techniques described, There
was no compiler language at the time in our plans, but
the idea of being able to understand and parse complex
expressions in itself was of sufficient interest to moti-
vate our efforts.

Another article which was to have great influence on our
future development was also published in the ACM Com-
munications in 1958, This was the description of what
was then called the International Algebraic Language
(IAL, later called ALGOL), which had been defined by
what became (and for the most part had been) an
esteemed group of computer people (Perlis and
Samuelson 1958).

1.2 The Economic and Situation Stimulus

JOVIAL really got its beginning because of the launching
by the Air Force of another large system., This one
followed SAGE and it was called the SACCS System,
SACCS was to be developed from scratch. This meant
new computers, a new system, new programming tech-
niques, and a new operating (executive) system, All of
these had to be developed before the operational pro-
gram could be developed. The main computer was the
IBM AN/FSQ-31. Other Communications Computers
(built by ITT) were also utilized.

1.3 The Technical Base for JOVIAL

The two major influences on the language of JOVIAL
were, first, the International Algebraic Language,
which served as the language architectural base, and
SAGE, which contributed to the knowledge of many of
the problems and ideas needed to solve the large

ACM SIGPLAN Notices, Vol. 13, No. 8, August 1978

programming system problem. IAL was chosen as the
base language for several reasons. One was that at the
time it appeared as if it would become the commonly
accepted standard for languages. Secondly, it seemed
like a better technical basis for a new language than
FORTRAN, which was the only other possibility, SAGE
influenced such matters as data handling, Communica-
tion Pool, and the need for a variety of types of varia-
bles (items or elements). These things were deemed
essential to the programming of SACCS and served as
the basis for the first definition of JOVIAL,

1.4 Organizational and People Beginnings

The first actual contribution to the language effort that
eventually led to JOVIAL was the small study which took
place at SDC in California in the latter part of 1958. As
stated before, it started with experimentation with the
analysis of logical and mathematical expressions, And,
although the intent was not, at the time, to start develop-
ing a language, that was not completely out of the realm
of possibility, (But it should be remembered that up
until then language development was not a wide-spread
phenomenon. Within a year or two, it would become as
wide-spread as certain viruses,) Key members of this
study were Erwin Book, Harvey Bratman, and myself.
During the latter months of 1958 I was transferred to
New Jersey to work on the SACCS project. This trans-
fer came shortly after the publication of the description
of JAL in the ACM Communications that was referenced
above, Based on the experience with SAGE and the
reading of the IAL description, I recommended to the
SACCS development managers, prior to my transfer,
the use of a higher level language to program the sys-
tem. To my and a number of other people's surprise,
this recommendation was accepted.

Actually the final recommendation was made in New
Jersey where the SACCS program was to be developed.
This written recommendation was done with a paper
typed on about seven or eight onion-skin pages around
December 1958. The title of it was "OVIAL - Our
Version of the International Algebraic Language'. It
was a brief description of some of the language concepts
which could be implemented in order to develop the
SACCS program. This paper was accepted as the begin-
ning of the project, and the first work was begun. (I
realized some years later that I had not kept that paper.
There were not many copies, and it was never a for-
mally issued document, At the time it seemed like a
relatively small item and hot likely to be continued much
in the future, at least outside of the particular SACCS
development environment. So the paper didn't seem
very important to me. Now it would be of great interest
to me for several reasons. One is its historical inter-
est to me and perhaps some others. Secondly, I am
quite curious what my first ideas were at that time for
the language I called OVIAL.,)

The project that was formed to develop this language and
compilers for it was called the CUSS (Compiler and
Utility System for SACCS) project. It was part of the
SACCS Division of System Development Corporation

204

which at the time was serving as a subcontractor to IEC.
IEC was part of the ITT complex, formed specifically to
develop the SACCS system.

During this period of the organization and beginning of
the JOVIAL effort in New Jersey, the other members of
the team who did some of the initial language investiga-
tion also started a project to develop a language. Even-
tually this language was called CLIP (Compiler Lan-
guage for Information Processing) (Bratman 1959),
(Englund and Clark 1961), These two activities, the one
in New Jersey and the one in California, were rather
independent efforts, the one in California being some-
what research oriented, while the one in New Jersey on
JOVIAL was operationally oriented - and in fact with a
fairly difficult schedule (which wasn't met).

The people on the CUSS project were primarily imple-
mentors. With the exception of my own experience with
the language PACT in 1954 and 1955, nobody else on the
project had any experience with compilers or languages.
Some had had experience in the development of the SAGE
system, For some members of the project, this was
their first programming experience. The list of people
who served at least sometime on the CUSS project (and
their current, or last known affiliation, where known)
follows:

Jules Schwartz (Manager)

Moe Spierer (Manager 709 JOVIAL)(CSC)
Hank Howell (Manager Q-31 JOVIAL)(SDC)
Paul McIsaac (Data Vantage)

John Rafferty (IBM)

Patricia Weaver (Unaffiliated)
Emmanuel Hayes (Century Data Systems)
Lynn Shirley (Consultant)

Jack Friedland (Consultant)

Donna Neeb (CSC)

Richard Brewer (Litton Systems)

Stan Cohn (Unknown)

Mike Denlinger (Unknown)

John Bockhorst (Northrop)

Phil Bartram (Unknown)

Frank Palmer (SDC)

Ed Foote (IBM)

John Dolan (Unknown)

Patricia Metz (Unknown)

Some of the members of the CLIP Project, in addition
to Book and Bratman mentioned previously, were:

Howard Manelowitz
Don Englund
Harold Isbitz

Ellen Clark

Ellis Myer

1.5 History of the Name

Since it has been stated that this paper on JOVIAL will
serve as some sort of permanent record of the language,
this seems like the right place to describe the origin of
the name., For many people this seems to be the most

important and best known part of the language. I have
over the years met many people who know the name (and
that Jules is part of it) but know nothing about the lan-
guage. There is a discussion of this in Sammet's book
on languages (Sammet 1969), but the following expands
somewhat on that.

As stated above, the name OVIAL was the one originally
recommended, which meant Our Version of the Interna-
tional Algebraic Language. In the late 1950s, society
wasn't quite as free thinking as it is today. The name
OVIAL seemed to have a connotation relative to the birth
process that did not seem acceptable to some people.

So, during a meeting, held approximately January 1959,
at which a number of technical issues were discussed-~a
meeting attended by members of the staff of the SACCS
Division Management, the CUSS project, and IEC
personnel--the subject of an acceptable name for the
language was initiated. Someone in the group, and it's
not known by me who it was, suggested the name JOVIAL,
This seemed like the easiest transition from OVIAL. The
question then was the meaning of the "'J'". Since I was
standing in front of the room conducting the meeting at
the time, somebody--perhaps somebody other than the
one who suggested JOVIAL--suggested it be called Jules'
Own Version of the International Algebraic Language.
This suggestion was met with laughter by the assembled
group. The meeting ended shortly afterward without
actually finalizing the discussion of the name,

I left town for a trip soon after. Upon my return I found
that the IEC people had put in the performance contract
an obligation for SDC to develop the language called
"JOVIAL (Jules' Own Version of the International Alge-
braic Language) and compilers for this language for the
IBM 709 and AN/FSQ-31." The AN/FSQ-31 computer
wasn't due to be installed for quite some time, but the
709 was available and was to be used by user personnel
for a variety of kinds of work. (I didn't remember who
the IEC people were, but was told in 1976 by Joe Ceran,
now of CSC, who was then one of the IEC personnel at
the meeting.) Thus, along with the dates for various
deliveries, the name JOVIAL, which included my first
name, became official terms.

1.6 Objectives

Both compilers were to be delivered to the Strategic Air
Command in Omaha and to be used for a variety of func-
tions., The AN/FSQ-31 Compiler was intended for the
programming of the SACCS System, the 709 for a vari-
ety of other ongoing SAC functions as well as the early
development of the Q-31 Development System prior to
the availability of the Q-31. The JOVIAL language was
to be the same for both the 709 and Q-31. The compilers
were to be programmed in JOVIAL,

1.7 Schedules and Allocated Manpower

I have not been able to find the original contract state-
ments containing the actual schedules that were required.
Whatever they were, it is quite certain that they didn't
get met. As I recall, the first version of the compiler

205

for the language was scheduled something like six months
after the beginning of the effort on the IBM 709, Since
the AN/FSQ-31 wasn't due to be installed for quite some
time afterwards, that had a much later scheduled deliv-
ery. The number of people on the project soon after it
got started was around nine and it grew to 2 maximum
of about 15 people as the CUSS project continued. The
actual first users of JOVIAL, aside from the compiler
developers themselves, were to use the first processor,
which was an interpreter, not a compiler, for a very
simple subset of the language, which was available in
about 12 months (around January 1960).

People within the SACCS development effort began to use
the language for very simple things (e.g., short subrou-
tines for conversion, calculations, expression analysis).
There were somewhere around eight man-~years' effort
before the language began to be used. About 25 man-
years of effort were expended before very heavy use of
the 709 Compiler took place. The first programs to
make use of the compilers (outside of the compiler
builders) were the utility and executive systems that
were to be used for the further development of the
SACCS system. The compiler development itself uti-
lized the early compilers. Once the earliest subset of
the language was available in a machine-coded compiler,
the compiler was immediately reprogrammed in that
language, From then on, all versions were programmed
in some version of JOVIAL,

1.8 Planning and Procedures

Today there are a variety of concepts for orderly devel-
opment, including structured programming, structured
design, top-down development, continuously evolving
specifications, and in general rigorous planning and
disciplined effort. These ideas were unknown to the
original JOVIAL development. The language design
actually proceeded largely in parallel with the imple-
mentation of the compilers. There were some basic
concepts (e.g., IAL, SAGE data definitions) and enough
definition to get started with the development, but a firm
baseline never existed, and changes were made almost
daily. The early documents were limited and essen-
tially working papers, subject to considerable change,
No reasonably complete '"final" documents were pub-
lished until the end of the major work.

The main "management technique' used was frequent
interaction among all personnel, including the project
leaders, where changes, techniques, and progress were
discussed on an individual and group basis. Although
not to be recommended as the major way to run a proj-
ect, it seemed to work for this project (where most
personnel, although rather inexperienced, were quite
capable and hard-working). No detailed plans or sched-
ules or systematic growth from design through testing
were ever written or followed. The only real test case
was the compiler itself.,

The first official document on JOVIAL was published in
April 1959 (Schwartz 1959) and the 'second in May 1959
(Schwartz 1959). These described a number of the

concepts and details of the language. Additional docu-
ments came out on the state of the language over the next
six months.

Since one of the major emphases of this language was to
be the development of the compiler in the language itself,
many of the ideas for the language came from those who
were actually in the process of developing parts of the
compiler. Changes were suggested by those people as
they programmed.

Many of the important parts of the language were devel-
oped in an incredibly short time. A good example of this
is the Data Definition Capability, which was the original
heart of JOVIAL. It was not well-defined when we
embarked on the development effort. It had to be devel-
oped as the compiler development proceeded. When it
was determined that we couldn't postpone the data defini-
tion any longer, it was developed in about 30 minutes.
One other person (H. Howell) and I examined each possi-
ble type and structure and developed the syntax for them
immediately (Howell 1960). Those who know the original
JOVIAL will readily agree that that part of the language
could have been developed in only 30 minutes. Many of
the syntactic improvements over the years have been in
that area, although the capability provided has always
been well received. Other language features (such as
the CLOSE Routine and Item Switch - discussed below)
were decided on and added in minutes. Rarely did lan~
guage features require more than a day to determine
both need and structure. STRING Items (discussed
below) were one exception, mainly because of objections
by the compiler producers.

1.9 Documentation and Early Versions

As stated previously, the first document describing the
language was published in April 1959 (Schwartz 1959).

It was superseded by another in May (Schwartz 1959).
The next two language documents appeared in September
(Bockhorst and Reynolds 1959; Schwartz 1959). In early
1960 work began in California on JOVIAL itself in addi-
tion to CLIP, so documents began to appear in the spring
of 1960 (Shaw 1960) on the language JOVIAL and some
plans for JOVIAL on computers other than those being
developed in New Jersey. However, those versions of
JOVIAL were not identical to the East Coast version.

The early use of the interpreter (for language version
J0) occurred in January of 1960, about a year after the
system was started. The first compiler for the language
version called J-1 (J minus one) was available for the
compiler developers in the fall of 1959. That compiler
was used to program the next version of the language—-
called J1--which was available in the winter of 1960.
This was used to produce the J2 version, The J2 version
was delivered in March of 1961 (Schwartz and Howell
1961). It ran on the IBM 7090, which had replaced the
709 by that time.

The AN/FSQ-31 version of J2 was delivered some
months later. Usage of the 709 version really began
back with the J1 version of the compiler for the

206

development of utility systems. In Omaha, at SAC
Headquarters, it began with the delivery of the 709 J2
version in March of 1961.

What eventually became a standard was the J3 version

of JOVIAL. That was originally described by Chris Shaw
(Shaw 1960; Shaw 1964). This version was developed in
California. Chris Shaw was responsible for most of the
early formal descriptions of JOVIAL.

The first formal presentation on JOVIAL was given in
the early 1960s at the International Symposium on Sym-
bolic Languages in March of 1962 (Schwartz 1962),

2. RATIONALE OF THE CONTENT OF THE
LANGUAGE

2.1 Language Objectives

The actual major objective of the original JOVIAL was
a language for programming large systems, although it
has typically been referred to as a Command and Con-
trol Language. These were systems which required the
contributions of many people. Also, they would not be
constrained to utilize limited sections or instructions of
the computer, nor to work with strictly computational
problems, These properties certainly seem to serve
the Command and Control problem, but serve equally
well the programming of a compiler or operating
system.

A natural result of this basic objective was the require~
ment for flexibility. The language had to be able to
handle a variety of situations. The necessity for people
to use machine language often would not be considered
satisfactory, even in those cases in which machine lan-
guage had always been assumed necessary in the past.

Another language objective was a reasonable level of
machine independence. The fact that two compilers for
two totally different computers was the original con-
tractual objective of the language helped to achieve this
latter objective (Wilkerson 1961).

2.2 Things Which Were Pretty Much Ignored In
The Language

One thing which was given little attention until the first
versions of the compiler began to be used to compile
themselves was compiler speed. Capabilities were
added to the language independent of their effects on
compilation speed. This was not true of some other
languages being developed at that time, one of which
was NELIAC, which had similar overall objectives but
tended to emphasize compilation speed to a much
greater extent.

Another thing which was ignored was language elegance,
An example of this was given previously in the discus-
sion of how the Data Description part of the language
was developed. Almost everyone on the project had no
foundation in language design, including the managers.
Consequently, although the example of IAL existed for

a relatively formal description of a language, the formal-
ity of JOVIAL tended to be ignored. This could not have
been completely bad, I think, It certainly had its weak
points, but in fact JOVIAL actually turned out to be very
natural for people to use. Many language features were
developed as actual needs were recognized, leading to
useful, if inelegant, results. The Data Definition area
easily fits here. It contained quite a bit of flexibility
and power, along with reasonable programming trans-
parency, but syntactically was a string of hard-to-
memorize characters required in specific sequence.
Long string constants were defined in a very awkward
way (e.g., 18H (THIS IS AN EXAMPLE)), requiring con-
siderable counting and recounting for changing. The use
of the symbols "($'" and "$)'" for liberally used brackets
was a bad choice. Imprecision in semantic definitions
did not help in making all versions totally compatible,
even when there were attempts at compatibility.

Another thing which was ignored was standardization with
other efforts. Even other efforts within SDC at that time
were ignored--partially because of the need for (if not
the achievement of) meeting of schedules on the SACCS
effort., It was also partially because of the physical dis-
tance between the JOVIAL efforts (For much of the time
period of the Project, the coast-to-coast trip was by
propeller-driven aircraft.) and the not unusual tendency
for people to ignore other people's work. And the initial
inspiration of TAL didn't lead to continued following of it.
No further attention was paid to IAL (or ALGOL, as it
was eventually called) after the initial design.,

2.3 Things Excluded in the Language or Given
Little Attention

One of the major initial exclusions of the language was
input/output. This can be attributed to SAGE. In the
SAGE system no program except the central control
program did any input/output. Consequently, it was felt
that the great majority of programs would not require
input/output for the SACCS System. JOVIAL thus did
not include it initially, Eventually, subroutines were
written and called through Procedures (Bockhorst 1961).
One of the original omissions (and still omitted) is
interrupt handling or any other obviously real-time
instruction or capability. Instead, JOVIAL gave access
to parts of the machine through various operations and
modifiers. These included access to parts of words in
arbitrary groupings of bits or bytes, which allowed one
to inspect interrupt or message registers, therefore
obviating the absolute need for more direct commands
in this area. In the initial versions of the language no
real debugging facilities were added. But the Communi~
cations Pool provided capability for supporting systems
to give considerable debugging capability at both the
individual program and system level. Also, no data
allocation statements were put into the initial version of
the language.

One thing which was allowed in the language but some-
what ignored in the compiler were multi~dimensional
arrays. The language provided for them, but the effi-
ciency of handling anything more than a single subscripted

variable was not stressed in the compiler. (However,
single-subscripting was handled quite well.) This
resulted in relatively little interest in JOVIAL for pro-
gramming multi-dimensional matrix problems. It was
felt, in justification of the latter, that the use of multi-
dimensional arrays for the kinds of systems for which
JOVIAL was to be used would be minimal,

2.4 Major Language Features

The basis of JOVIAL taken from IAL included such things
as compound statements. The use and syntax of com-~
pound statements was the same as defined in IAL. The
major operators were generally the same, including a
switch which was similar to the IAL switch, The state-
ment structure, labelling, and ending were the same.
Procedure calls, at least initially, were similar to
IAL's, and the general loop structure and FOR state-
ments were similar,

The biggest departure (and the original one) from IAL
was in the Data Definition area. Where IAL provided
primarily for floating point arrays and some integer
values, the JOVIAL language included at the lowest data
description level entities which were called '"items"
(based on the SAGE term) which had a variety of types.
The types included floating point, fixed point (where the
scaling was specified to be part of the item), Hollerith
and Standard Transmission Code character strings (in
the initial version, these were limited to reside within
one computer word), and status valued items, These
latter represented with symbolic values finite states
such as GOOD, FAIR, and POOR, or ON and OFF, or
any predefined set of values., In the JOVIAL program
these are referred to by the symbolic names (e.g., IF
WEATHER = V(CLOUDY)), although internally they are
assigned integer values by the compiler.

Items were assigned to the next higher level of hierar-
chy, which was an "entry" in JOVIAL, Each entry con-
tained all of the elements or the items that were neces-
sary to describe a particular object (e.g., Aircraft,
Persons, etc.). All entries for an object were contained
in a "table", the top level of the hierarchy.

Tables could take on several forms. These were serial,
parallel, and variable.

In the serial table, all words containing an entry were
contiguous. As an example, a serial table containing
the items A, B, C, D, E, and F in a three-word entry
would appear as follows:

Al B
Entry 0 CIDTE
F
(A B
Entry 1 CID]E
| ¥
[} [}
[[]
[] []

A parallel table containing the same items could appear
as in the following:

Entry 0 A B
Entry 1 A B
Entry 2 A B

°

®

[
Entry 0 C|D]|E
Entry 1 C|D| E
Entry 2 C|D]J|E

o

o

°
Entry 0 F
Entry 1 ¥
Entry 2 F

°

®

°

Indexing in both cases with JOVIAL was independent of
the entry size or parallel/serial format, For example,
the sequence:

FOR I1=0, 1, 103
D(1) =5%

would set D in the first 11 entries to the value 5 for
either of the above (and would work in the serial case
if fewer or more words were in an entry).

It was also possible to utilize a variable format which
might have a different structure for each entry, as
follows:

Entry 0 {

A B
Entry 1{ [C| D] E
F

Entry2! [A] TJE
L] L]
® ®
[] ®

In the variable case, there would normally be some item
in each entry (say A in this example) which would pro-
vide assistance in stepping from one entry to the next,
This was not done automatically by the compiler. A
sequence of the following kind would be possible:

FOR 1= 0%

BEGIN X1, IF A@I$) =33 D($1$) = 58
L=1+ AI)$
IF A($13) = 03 STOP $
GOTO X1%

END

This sequence would set all existing Ds to 5 until the
end of the table, where only three word entries con-
tained D, and the end was signaled by an A equal to 0.

Another data type was added to the language--much to
my chagrin because of its awkwardness~-during its
early implementation. This was called STRING and it
provided for a rather complex combination of character
string elements in a variety of formats within an entry.
This went beyond the original concept of items and
character string items. (This was one of the only
""committee type' additions to the early language.)

These data types and data structures provided for a
comprehensive capability for access to almost any con-
figuration of logical or arithmetic values. Items could
be either full or part words. (No item could be more
than one word. This was changed in later versions of
the language.) Also, access to parts of items (discussed
below) was provided. The point of this was not only the
definition of data structures, It was to provide it in such
a way that the programmer would not need to know
where the item was placed within a word, which word in
an entry it was in, and in most cases the size of the
items and other facts about it. In some cases, the type
itself did not have to be known,

Thus, the JOVIAL program could remain largely
unaffected by changes in the data description. That was
a crucial part of the language. Also, in some ways this
capability was used to show that in fact JOVIAL would
produce more efficient code for programming systems
than the machine language as used for SAGE. The
following type of example was used as an illustration.

In SAGE, 'pseudo-instructions' (macros) were used in
machine language when’ referring to Communication

Pool items. The purpose was to prevent any assump-
tions about the size or position of items by programmers
while producing reasonably good code for specific situa-
tions., (Programs had to be reassembled when the Com-
munication Pool changed.) Four such pseudo instruc-
tions were:

ETR Perform an AND to the Accumulator with
a mask the size and position of the item,

POS Shift the accumulator so.that the least
significant bit of the item is in the least
significant bit of the accumulator,

RES Shift the accumulator left so that the least
significant bit of the accumulator moves
to the least significant bit position of the
item.

DEP Deposit into the word containing the item

from the proper bit positions of the
accumulator.

At least one instruction was generated for each
pseudo-instruction.

208

Thus, to add two items and store in a third, the following
sequence had to be used.

CLA ITEM1
ETR ITEM1
POS ITEM1
STO TEMP
CLA ITEM2
ETR ITEM2
POS ITEM2
ADD TEMP
RES TEMP3
DEP TEMP3

Move ITEM1 to accumulator

Save ITEM1
Move ITEM2 to accumulator

Add the two items

This sequence generated a minimum of 10 instructions
(on the SAGE computer). In JOVIAL, the same opera-
tion would appear in the following statement:

ITEM3 =ITEMI1 + ITEM2$

Depending on the definitions of the items, this statement
could generate as few as three instructions because of
the capability of the compiler to analyze the entire
statement,

The Communication Pool is essentially the Data Defini-
tion for all items and tables to be used by the subpro-
grams of the system. In some versions of JOVIAL
compilers the Communication Pool is syntactically iden-
tical to the Data Definition section within a program, In
other versions, however, the Communication Pool actu-
ally has a different format than the Data Definitions and
has more information than the JOVIAL programs them-
selves permit. Such things as allocation information
can be put into the Communication Pool for both pro-
grams and data. The Communication Pool is used for
more than compiling programs. It can also be used for
such things as simulating data for testing, It allows for
the entry of the item name and its value without the pro-
grammer having to specify where to place the value or
its internal form. The Communication Pool also can
serve as a tool for data reduction after tests are run,
This is because the Data Reduction Program can
examine the information as it exists after a run and use
the Communication Pool definition to translate it to a
readable form for the user or the tester (Fjomsland
1960).

Another significant feature of the JOVIAL language from
its earliest version was the provision for access to bits
and bytes of items. Modifiers for this provided access
to a variable number of bits or bytes of the item, start-
ing from any position within the item. The expressions
are BIT(i, j)(item) and BYTE(i, j)(item), where i
is the starting bit or byte and j the number of them,
These provide a good deal of power, However, the effi-
ciency of this form when i and j are both variable is at
best adequate, but normally much worse. The simpler
expression where only one or a constant number of bits
or bytes was referenced can produce more efficient code.

209

Access to entries of tables also was given in JOVIAL.
Thus, one can move whole entries other than on an
item-by-item basis. A modifier was provided which
provided access to the count of entries in a table for
use or modification, For example, the statement
NENT(TABLE) = NENT(TABLE) + 1$ increments the
count of entries in TABLE.

Some other rather unique forms were added to the early
JOVIAL to resolve certain problems, One was the
CLOSE Statement. This provided for a closed subrou-
tine with no entrance or exit parameters, but it main-
tained and could use the value of a subscript when it
was within its domain of definition. The LOC modifier
was added. This modifier, which stands for '(absolute)
core location", provided the capability of getting to the
location of a part of memory., The expression

LOC (TABLE or ITEM) enabled one to reference
relocatable information. Today, pointers can be used
for this without some of the awkwardness and inadequacy
available only with LOC. Another kind of flexibility
which was provided (and which created problems for
compiler writers) was the fact that the step-factor in
the FOR statement (For I = A, B, C; with B being the
increment or the decrement for I) was allowed to be a
variable. It could be either negative or positive, and in
fact during the loop was allowed to change sign, Of
course, that was not the normal case, but the need for
providing for it in the compiler was one of those things
which created some of the early compiler problems in
achieving efficiency and speed.

NENT, BIT, BYTE, LOC, ENT, MANT and other
terms are examples of functional modifiers which were
added during the early development of JOVIAL, These
were utilized to satisfy a number of the problems which
required language solutions. They can normally be

used in "right' or "left side' expressions. For exam-
ple, the statement

BIT (I)(ITEM) = 1$
causes the Ith bit of ITEM to be set to 1. (When the

number of bits or bytes is 1, it doesn't have to be
specified,)

Although the purpose of the language was to provide for
machine oriented programming without the use of
machine language, the originators were realistic enough
to know that there would be a requirement for the use of
machine language, at least occasionally. Particularly
in the early versions, at a minimum, access to input
and output required some machine language operations.

Access to machine language is easy in JOVIAL., The
operator DIRECT signals the beginning and the operator
JOVIAL the end of machine language., Within the
machine language, it was expected that users would
need access to JOVIAL (and Comm Pool) defined items
and tables. Thus, an operator was defined to give

access to these from within the machine language part of
the program, This operator was called ASSIGN and it
permitted one to place an item in the accumulator or the
accumulator to an item. The compiler automatically
took care of the shifting of the item as it would in normal
JOVIAL statements, (The scaling of the accumulator
was specified by the programmer in the ASSIGN state-
ment,) Actually, the ASSIGN combined the functions
available in the pseudo-instructions of SAGE shown
above. Another capability of interest was called the
Item Switch, A Numeric switch is provided as in TAL
for a series of branches based on normally continuous
integer values of an item. But this was not sufficient for
things like status items which were, first of all, sym-
bolically named where users could not assume values

for the names, Also, the Item Switch could be used for
other item types such as character strings, which can

~ have quite random values.

2.5 Language Design Methodology

The primary technical driving forces for JOVIAL are
quite clear. Given that the basic structure would be that
of IAL, the major question was what would have helped
in the programming of SAGE, since it was assumed that
the programming of SACCS would have a similar set of
problems., These included the use of a large number of
people, different types of data, more logic operations
than calculation, need for item packaging to save space
and access certain machine registers, etc. For exam-
ple on the SAGE computer there was no floating point
arithmetic, Everything was fixed point. So, although
the SACCS computer had floating point, it was assumed
that fixed point arithmetic would be useful for it as well.
Other major influences were those things found neces-
sary to program the compiler itself, That was the
source of most of the early modifications to the language.
Other ideas came from early users who were beginning
to use the language. They discussed and wrote about
problems that they had found in using the language.

It would be quite an extreme exaggeration to say that a
strict methodology or control system was used in devel-
oping the JOVIAL language. As stated earlier, much of
the development came from innovation when needs were
recognized, Most problems were resolved by adding to
or modifying the language. Many problem resolutions
had as a goal the obviation of the need to resort to
machine language, This mode of working led to some
extremely fast decisions, some awkward syntax, some
difficulties for the compilers, but a quite practical and
usable language.

The basic approach was essentially as described before.
The base language was chosen, and it was initially
implemented in a variety of processors. Compiler work
was begun with a minimal form of the language, Data
Definitions were added for the total range of data that
was to be needed both for the compiler and for the appli-
cation systems. . As time went on, modifiers and other
forms were added as the need arose. The language
continued to evolve for some years thereafter, both

within the original effort and in California and other
places as the language was used elsewhere.

3. A POSTIERI EVALUATION

It is always difficult to provide an accurate objective
account of a product's success or failure (even when
one's name isn't directly involved). This is true for
many reasons, including the fact that nothing is ever
absolutely good or bad. But the following attempts to
present a reasonable assessment of JOVIAL's effect on
the world.

3.1 Meeting of Objectives

In general, it seems that JOVIAL met its goals. There
have been a large number of systems of many types
produced using JOVIAL. Most of these have been for
areas which up until the time when JOVIAL was devel-
oped were not thought programmable in other than
machine language,

For the first decade of use there were really never very
many serious complaints about the language capability
(after the first year or two of development). The diffi-
culties and the complaints tended to be largely the result
of early implementations. The early compilers were,
to put it mildly, not very reliable. They were
extremely slow. The first compiler on the 709 took
eight hours to compile itself. In those days the proba-
bility that one could compile for eight straight hours
and get a properly punched binary deck for output was
less than . 5. Of course this slowness was also recog-
nized when compiling other sizeable programs, This,
combined with the fact that the compiler might produce
erroneous results, could dampen even the most ardent
enthusiasm, But even with these kinds of problems,
there was little drive on the part of early users to
disassociate themselves from the use of the language.
Rather strong statements were used to point out com-
piler problems, but once many of the early difficulties
were overcome with the compiler the language was
considered quite satisfactory.

Another interesting fact was pointed out by someone
responsible for teaching early users how to use the
language (Rizzo 1962), The initial capability didn't
provide much tutorial assistance, so that learning of
the language was not easy and the documentation,
although it improved with time, wasn't the best for
beginners. But those who were responsible for train-
ing and criticized this lack of good teaching aides also
pointed out that once people got over the hurdle of
learning JOVIAL there were very few questions and
very few problems in using what they learned, Most
people found the language relatively easy to retain and
use for everyday work.

The fact that the SAC organization under Colonel
William Shirey in Omaha (the first non-SDC users)
continued to use the language on a fairly heavy basis,
despite some early tough going, was critical in keeping

the JOVIAL language alive. This led to an eventual
spread of use in the Air Force. It is also true that its
use spread without support from aay major manufac-
turer. Almost all the JOVIAL compilers that were
produced until the mid-late 1960s were done under con-
tract to a government agency for a specific system.
Manufacturers were evolving COBOL and FORTRAN at
that time. Of course a number of other languages were
also in development in the period from 1960-1965, such
as MAD, NELIAC, ALGOL 60, SNOBOL, JOSS, and
hundreds of others. But JOVIAL maintained its prog-
ress during that period,

The objective of moving JOVIAL-coded programs and the
compilers from computer to computer was partially met.
The initial effort in New Jersey provided compilers for
two computers for the same language almost simultane-
ously. When one moved a program from a computer
with six characters in a word to another which had eight-
character words, the fact that the early compilers didn't
provide for character string items of more than one
word in length certainly made the portability imperfect.
Similar results occurred because of the restrictions on
scaled fixed point items. However, considering the type
of programming which was permitted (much more vari-
able than possible with FORTRAN), portability was
reasonable. I'm not sure that it had too much effect on
the ultimate success or failure of the language. Most
users tended to program for a machine and stay with it
on that machine, It is true that very few JOVIAL com-
pilers handled the same version of the language. After
the J2 effort, most others produced different subsets

of J3.

The objectives for JOVIAL that were set originally were
not changed. The flexibility and power of the language
continued to be objectives throughout and were reason-
ably well satisfied. In fact, as people developed the
language further there were actually some restrictions
put in that did not exist in the early version. These
included restriction to equal types for formal and
entrance parameters of procedures. Restrictions on the
step-factor of the FOR Statement were implemented in
some later versions.

3.2 Contributions of the Language

It is hard to say what contribution to programming tech-
nology in general or to other languages JOVIAL actually
made,

There are a number of languages which contain some of
the capabilities or characteristics of JOVIAL., Most
often they are in a different format and except for cer-
tain situations it's not possible to directly relate that
language to JOVIAL itself. A good example of this is
PL/I. JOVIAL knowledgeable reviewers of PL/I when
it was first developed pointed out that many of the char-
acteristics of JOVIAL had been adopted in PL/I. How-
ever, there's no official acknowledgement of the use of
JOVIAL as one of the bases for PL/I to my knowledge.

211

Nevertheless JOVIAL had things to offer and, whether
directly or indirectly, should have contributed some-
thing to the technology. It was one of the first system
programming languages and helped show that languages
were capable of serving that purpose. It was one of the
early, if not the earliest, compilers coded completely
in its own language, It provided for data structures,
types, and operations that permitted programming out-
side the realm of the strictly computational, It was even
possible to use it for commercial programming.
Although certain problems occurred in the early ver-
sions with rounding and report formatting, JOVIAL was
used for the programming of a wide variety of systems,
It provided for access to subparts of elements and
words, which in early computers with small memories
was very important, and is still valuable today for a
variety of things. It was a language really aimed at
flexibility and non-constraint on the program. These
were all contributions and valuable factors for the
people who used it, They have helped maintain the
language's use for a lengthy period, although the initial
intent of the language was actually intended for only one
specific set of users and a single system.,

There have been quite a few versions of JOVIAL, I
don't know them all and within each version there were
variations with different implementations, so that there
is unlikely to be a comprehensive list of all the capa-
bilities that actually were in each version, A list of

the names for different varieties or versions of JOVIAL
includes: JO (Olson, Petersen, Schwartz 1960), J-1,
J1, J2 (Schwartz and Howell 1961), J3 (Shaw 1961,

Shaw 1964), and J3B (Department of the Air Force 1967).
This was the original Air Force standard version, J3
being the version developed in California in parallel with
the development of J2 in New Jersey for the SACCS con-
tract. Other versions included J4, J5, and J5. 2, the
latter two being outgrowths of a version called Basic
JOVIAL (Perstein 1968), which was actually an attempt
to provide a working version with a fast compiler. (For
example, it didn't include fixed point arithmetic), This
was developed because of the criticism of the slowness
of the compiler. Basic JOVIAL was itself derived from
an experimental version called JX2 (developed in 1961),
which rivaled other compilers in speed but did not have
enough language. When timesharing came in the early
1960s, another interpretive version of a subset of
JOVIAL was produced. It had language capability simi-
lar to JOSS (if not the elegance) in that it provided for
arithmetic, formatting, simple terminal input/output,
and other capabilities useful for interactive users. That
was a version of JOVIAL which had quite different objec~
tives than the original system programming language.
This version was called TINT and was described in a
paper at the 1965 IFIP Conference (Schwartz 1965),

Although the preceding references to the various ver-
sions of JOVIAL may appear rather mind-boggling, it

is actually probably an understatement. With the excep-
tion of some Air Force sponsored versions of J3, little
control was exercised over the language. So, for

reasons of implementation pressure, computer
idiosyncrasies, particular needs or lack of needs, and
individual choice, one will note differences within
""versions' as well as among different ones. New ver-
sions were sometimes labeled after compilers were
developed. However, the major aspects generally were
implemented, and there was 'near-compatibility' in
most versions.

JOVIAL has served as a direct contributor to at least
several languages. One language which is in use today
in Europe is CORAL (Woodward and Wetherall 1970),
Many of the initial concepts for CORAL were taken from
the JOVIAL of the early 1960s. A language which has
been used by Computer Sciences Corporation for much
of its systems programming work is called SYMPL., It
consists of elements of JOVIAL and FORTRAN and some
other properties developed at CSC. SPL, a Space Pro-
gramming Language which was developed by the Air
Force Space Command some years ago, was based to a
large extent on the experience with JOVIAL, Others,
such as CMS II used by the Navy and perhaps PL/I as
stated before, have had either a direct or some indirect
relationship with JOVIAL.,

In the early 1970s a group was formed by the Air Staff
under Leo Berger to produce a new standard version of
JOVIAL, They developed a specification for a language
called J73 (Department of Defense, date unknown).
There have been several implementations of it, and it
is being used on a variety of computers at the present
time, This is the first version which, by design, is not
upward-compatible with other versions., Some version
of JOVIAL, or several versions of JOVIAL in some
cases, have existed on just about every major manufac-
turer's computers and some less well-known computers
over the years. A minimum of ten companies have
produced JOVIAL compilers.

JOVIAL was adopted in the mid-1960s as a standard lan-
guage (Department of the Air Force 1967) for the Air
Force and that's where most of its use has been. It also
was for a short period of time adopted by one part of

the Navy (NAVCOSSAT). This adaptation of JOVIAL for
the Navy was done on the basis of a comparative study
comparing JOVIAL, a number of other languages, and
machine language. However, there were a number of
criticisms of the particular study, and the future of
JOVIAL in the Navy became somewhat tenuous. (An
interesting side-light to that particular study was the
fact that the first time it was run the machine language
version of the program was assumed to be the base with
which to compare other languages' efficiency and size,
But the machine language program actually came out
worse in these respects than some of the higher level
languages involved. This caused the people responsible
for the study to rerun it. Machine language fared better
the second time,)

In 1961, members of the Rand Corporation conducted a
study to compare JOVIAL with FORTRAN to see if

JOVIAL or any language really merited being used as a
Command and Control language at the time. Thé actual

212

test consisted of seven problems, five of which utilized
multi-dimensional arrays within several statements.
The basis of the test was to see how well these would
be compiled. FORTRAN won handsomely on all of the
array problems with respect to generated code.

JOVIAL compared favorably on the non-matrix prob-
lems., JOVIAL was much worse in compilation time,
which didn't help its cause. In any case, based on that
experiment, which seemed inadequate for the choosing
of a Command and Control language, the people doing
the study recommended that no language be adopted for
Command and Control use at that time, The main thing
proven by some of this is that we haven't mastered the
art of comparative studies. The conclusion may have
been right, but it always seemed to me that if so, it
was in spite of the method used to reach it, (Haverty
and Patrick 1963,)

JOVIAL has been used by a variety of services and
some other organizations, including the FAA, the Air
Force (of course), the Navy (for some things and a
variety of research and system projects).

Since the earliest versions of JOVIAL, the most signifi-
cant changes that have been added are in the area of
input/output. There are now a number of input/output
commands in the language. Dynamic control of data
allocation has been entered through data structure
definitions, and pointers have been added in J73, Some
syntax improvements have been provided in the lan-
guage, particularly in the data definition area and in
some of the modifiers. Some types have been purified
to a certain extent, Originally, arrays and tables were
separate. For example, when one defined an array he
couldn't include items, and arrays couldn't be part of
tables. That has been changed. There are a number
of other changes which have taken place. Many of the
key ones, of course, are being implemented in J73.

3.3 Mistakes and/or Omissions

The first major omission which constrained the use of
JOVIAL considerably was its lack of input/output, This
of course was actually a planned omission from the
beginning, But its use for systems other than large
systems where it is assumed that just one or several
routines would service all input/output is of course
diminished by this lack of input/output for individual
programs. The lack of formatting and the ability to
output or input by format or other convenient means
(which is still an official omission from the language)
has kept the language at arms length for many applica~
tions. Actually formatting has been implemented in at
least a few versions. One which included formatting
was the interpretive version called TINT (Schwartz
1965), That was essential for it to operate as an inter-
active user oriented language. JOVIAL syntax awkward-
ness in certain areas probably didn't affect its use from
the point of view of those who started using the language
but helped keep certain communities uninterested in the
language. The early implementation problems, partic-
ularly the speed and size of the initial compilers, which

were 50, 000 or more instructions, helped keep down any
overwhelming use that might have occurred otherwise.
To a great extent these implementation problems were
due to the fact that features which made compiling diffi-
cult were sometimes added with reckless abandon. And,
of course, the lack of efficiency in certain areas—~
particularly multi-dimensional arrays--restricted its
application by programs which required them, It is
unlikely that much interest would have been generated

in JOVIAL for programming outside of its major areas
of current use even if it had been much improved in
these areas. Other languages such as FORTRAN and
COBOL are accepted for programming these problems,

3.4 Problems and Trade-Offs

The hurry-up mode in the early versions created incom-
patibilities among different versions, particularly those
separated geographically and those developed by different
groups. And, of course, this detracted from portability
among versions. The overall emphasis was for flexi-
bility and generality of the language, which in turn led to
a variety of implementation problems. This caused
reliability, speed, and code generation difficulties. But
the trade-off was made. There is a question whether in
the long run it was a bad trade-off. The flexibility and
the generality were probably worth some initial difficul-
ties. Time for implementation was always a problem in
this development, The language was defined rapidly,
and the compilers were written quickly, There wasn't

a lot of planning by the individuals and the managers
concerned, but I think to some extent that this hurrying
was as much a question of personalities as pressure.
The people who were involved liked to do things in a
hurry, were not very academically or research oriented,
and they liked to see things run (typical system pro-
grammers). So I sometimes wonder if there hadn't been
imposed deadlines (which in many cases of course were
missed anyway) whether the people would have done a
significantly more studious effort. (I'm certain that the
tendency to '"produce' rather than "study' is true for
me, who was responsible through J2,)

4, IMPLICATIONS FOR CURRENT AND FUTURE
LANGUAGE

Certainly, whether or not directly a stimulus, the work
that went on in the early JOVIAL is now represented in
a variety of ways., System programming languages are
quite common. Complex data definition capability in a
variety of languages certainly is not unusual today.

Much of the system programming language work today

is based to a large extent on PL/I, but it is also based
on other languages as well, This concept within JOVIAL
did prove feasible and valuable.

The original JOVIAL work was not a committee effort,
There were relatively few people who actually helped
design the language. Most of the people involved hadn't
done this kind of work before and were basically imple-
mentors, or programmers. The fact that it wasn't a
committee effort in many ways created the positive
characteristics of the language as well as some of its

213

negative ones. The language did maintain its original
objectives, and its major characteristics remained
fairly consistent throughout its early development.
Perhaps the influence of others who had some better or
more experience in this area could have been valuable,
but it is also quite possible that with a variety of other
contributors, it would have lost some of its flavor. For
initial efforts on language design, an individual driving
effort is probably a good idea.

I'm not certain what the future of JOVIAL is. The
Department of Defense is trying to standardize once and
for all on a language. This is one of those efforts which
is going to take a long time to resolve. Meanwhile
JOVIAL itself is being implemented and used for a num-
ber of projects. It has of course much more competi-
tion now in the areas for which it was intended. Also,
competition from entrenched languages like COBOL and
FORTRAN for things outside of what are typically
JOVIAL applications, or considered to be JOVIAL
applications, is much too intense to assume that it'll
ever go beyond that. It's probably more likely that it
will continue to have about the same percentage of use
in the world as it has had until now. Hopefully, it will
have influenced the Department of Defense standard
language which is eventually chosen to some degree.

BIBLIOGRAPHY
Bockhorst, J. and Reynolds, J. 1959. Introduction to

"JOVIAL" Coding, Lodi, NJ: System Develop-
ment Corporation SDC Report FN-L0-139,

Bockhorst, J., 1961, JOVIAL I/O (7090). Paramus,
NJ: System Development Corporation SDC
Report FN-L0-34-3, S1,

Bratman, H, 1959, Project CLIP, Santa Monica, CA:
System Development Corporation SDC Report
SP-106.

Department of the Air Force. 1967. Standard Computer
Language for Air Force Command and Control
Systems. Washington, DC Air Force Manual
AFM 100-24,

Department of Defense.
(J73/1),

Military Standard, JOVIAL
MIL-STD-1589.

Englund, D. and Clark, E. 1961 January. CLIP Trans-
lator, Communications of the ACM 4(1): 19-22,

Haverty, J.P. and Patrick, R.L. 1963. Programming
Languages and Standardization in Command and
Control. Santa Monica, CA: Rand Corporation
Memo RM-3447-PR and DDC Document AD-296 046,

Howell, H.L. 1960, JOVIAL - Variable Definition For
the 709 Translator, Paramus, NJ: System
Development Corporation SDC Report
FN-L0-34-2-52,

Kemnedy, P.R., 1962, A Simplified Approach to JOVIAL.
Santa Monica, CA: System Development Corporation
SDC Report TM-555/063/00.

Melahn, W.S. et al. 1956 October, PACT I (A series of
7 papers). Journal of the Association for Computing
Machinery 3(4): 266-313.

Olson, W.J., Petersen, K. E., and Schwartz, J.1I. 1960.
JOVIAL and its Interpreter, a Higher Level Pro-
gramming Language and an Interpretive Technique
for Checkout. Paramus, NJ: System Development
Corporation SDC Paper SP-165,

Perlis, A.J. and Samuelson, K. 1958 December. Pre-
liminary Report - International Algebraic Language.
Communications of the ACM 1(12): 8-22,

Perstein, M. H, 1968, Grammar and Lexicon for Basic
JOVIAL, Santa Monica, CA: System Development
Corporation SDC Report TM-~555/05/01A.

Rizzo, M. 1962, Critique of the JOVIAL User's Manual,
FN-L0-34-3, Paramus, NJ: System Development
Corporation SDC (internal use only) Report
N-L0-2109/000/00.

Sammet, J. 1969. Programming Languages: History
and Fundamentals. Englewood Cliffs, NJ:
Prentice-Hall,

Schwartz, J.I. 1959. Preliminary Report on JOVIAL.
Lodi, NJ: System Development Corporation SDC
Report FN-L0-34,

Schwartz, J,I. 1959, JOVIAL - Report #2, Lodi, NJ:
System Development Corporation SDC Report
FN-L0-34-1,

Schwartz, J,1. 1959, JOVIAL - Primer #1. Lodi, NJ:
System Development Corporation SDC Report
FN-LO0-154,

Schwartz, J.I. 1960. JOVIAL - A Description of the
Language. Paramus, NJ: System Development
Corporation SDC Report FN-L0-34-2,

Schwartz, J.I. 1960. JOVIAL - Clarifications and
Corrections for FN-L0-34-2., Paramus, NJ:
System Development Corporation SDC Report
FN-L0-34-2-51.

214

Schwartz, J.I, 1962, JOVIAL: A General Algorithmic
Language., In Proceedings of the Symposium on
Symbolic Languages in Data Processing.
pp. 481-493, New York: Gordon and Breech.

Schwartz, J.I. and Howell, H. L. 1961. The JOVIAL
(J-2) Language for the 7090 Computer.
Santa Monica, CA: System Development Corpora-
tion SDC Report FN-6223/100/00.

Schwartz, J.1I, 1965, Programming Languages For
On-Line Computing. In Proceedings of the IFIP
Congress 1965, Vol, 2 pp. 546-547, Washington:
Spartan Books.

Shaw, C.J. 1960. The Compleat JOVIAL Grammar,
Santa Monica, CA: System Development Corpora-
tion SDC Report FN-4178,

Shaw, C.J. 1960. The JOVIAL Lexicon: A Brief
Semantic Description, Santa Monica, CA: System
Development Corporation SDC Report FN-4178, 51,

Shaw, C.J. 1960. Computers, Programming Languages
and JOVIAL, Santa Monica, CA: System Develop-
ment Corporation SDC Report TM-555, Part 1,

Shaw, C.J. 1961, The JOVIAL Manual, Part 3, The
JOVIAL Primer. Santa Monica, CA: System Devel-
opment Corporation SDC Report TM-555/003/00,

Shaw, C.J. 1964, Part 2, The JOVIAL Grammar and
Lexicon, Santa Monica, CA: System Development
Corporation SDC Report TM-555/002/02,

Tjomsland, I. A, 1960, The 709 JOVIAL Compool.
Paramus, NJ: System Development Corporation
SDC Report ¥N-3836.

‘Wilkerson, M, 1961, JOVIAL User's Manual. Subtitled

JOVIAL Language Specifications for 7090 and MC
Compilers. Paramus, NJ: System Development
Corporation SDC Report FN-L0-34-3.

Wolpe, H, 1958 March. Algorithm for Analyzing Logi~
cal Statements to Produce Truth Function Table,
Communications of the ACM 1(3): 4-13.

Woodward, P. M. and Wetherall, P.R. 1970, The
Official Definition of CORAL 66. Her Majesty's
Stationery Office,

